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Abstract
The project explores Fourier’s transformation and its derivations. Using the con-

cepts learned in the differential equations class, the paper discusses and presents the
mathematical differentiation of the Fourier theorem, as well as the necessary theorem
known as Euler’s Formula. The paper explores the concept of Fourier’s Series and
transforms to translate wave functions from an imaginary frequency space, to real
space by the use of matrices multiplication resulted from the summation of trigono-
metric periodic functions. The paper discusses issues that the applications of the
Fourier theorem has encountered, and presents the mathematical algorithms used
to solve them (Cooley-Tukey, Butterfly Diagrams, and matrix multiplication). Fur-
thermore, the paper explore the various applications of the theorem, and examines its
uses in the modern technology world.
Keywords:

Euler’s Formula, Frequcny Space, Fourier’s Series, Fourier Transforms; Cooley-Tukey
Algorithm; Fast Fourier Transformation.

1 Introduction and History

The first thought of combining periodic functions into a simply sum of oscillating
motion was first recorded in the 3rd century BC, in Egyptian Mathematics. The next ap-
pearance of such an idea, was in 1805(2). Joseph Fourier, a French Mathematician who
made significant contributions to the study of trigonometric series, had established the
idea that any arbitrary (continuous) function on the interval [0,1] can be represented by a
trigonometric series(2). Fourier’s Series was originally used to solve the heat equation (9)
(a Partial Differential Equation that describes heat flow in a medium) in a metal plate,

∂T

∂t
=

k

ρ · c
· ∂

2T

∂x2

however, when presented to the French Academy in 1807, the series’s true potential was
discovered. The heat equations, as was presented in the 1800’s, represented the spread
of heat in a space (a medium) over time. Fourier modeled a complicated heat source as
a superposition - a linear combination - of simple sine and cosine waves, which can be
thought of as the summation of various wave functions. The summation, which based on
calculus mathematics, can be represented as a series over a specified range [R - Period of
the series], which allowed Fourier to create the following series to solve the heat equation

N∑
n=0

(an · cos(
2πnt

P
) + bn · sin(

2πnt

P
))
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where like in simple harmonic motion, and oscillating motion,

Symbol Meaning (Definition)

n number of cycles

a and b Fourier’s Coefficients

P Period[ic motion]

Hence, we can define the followings as well

Symbol Meaning (Definition) Relationship (Formula)

f corresponding harmonic frequency f = n / P

ω Angular Frequency ω = 2 · πf = 2 · π nP

Therefore, we can define Fourier’s Series as:

F (t) = sn(t) =
a0
2

+

N∑
n=1

(an · cos(ω · t)) + bn · sin(ω · t)) (eqn. FS-1)

For the sake of mathematical symmetry, the series could also be defined as:

F (t) = sn(t) =
∞∑

n=−∞
(an · cos(ω · t)) + bn · sin(ω · t)) (eqn. FS-2)

Although originally the series was used to solve the famous heat equations, it
could also be applied in various problems in math, classical and modern quantum me-
chanical physics, and computer science and voice recognition. With some modifications
to Fourier’s series, a mathematical tool known as Fourier’s Transforms was developed.
The tool allowed the conversion (transformation, translation of values from imaginary
planes (spaces), to real ones. Practically, Fourier’s series became a reliable mathematical
tool in Engineering to approximate and calculate superposition of any sinusoidal wave.

2 Conceptually

The mathematical development of the Fourier Transforms is a strong prove that
math is developed to solve real life problems, and not simple just ”found”. To under-
stand the concept of Fourier series and transformation, the concept of a wave must be un-
derstood first. A wave is a ”Disturbance in a medium that propagates of its volition” (7).
A wave is defined mathematically by four major properties: Amplitude (A), Frequency
(f), Period(T), and Wavelength (λ).
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(7)

Each propagating wave can be identified by the following relationships(7):

Relationship Formula

Cycle Period T = f−1 = 1/f

wave speed v = λ · f

wave number k = 2·π/λ

Traverse Position y(x, t) = A · sin(kx− ωt)

By differentiating the traverse position equation of a traversal periodic wave both with
respect to time, and horizontal displacement (x), we get the general wave equation(7):

∂2y

∂t2
(x, t) = v2

∂2y

∂x2
(eqn. W)

The basic periodic wave is a wave that has a motion that periodically repeats itself,
or in other words, repeats its behavior every set period of time. Conceptually, one of the
describing features of a periodic traversal wave is frequency. Frequency is the rate at which
the wave completes a cycle, and is measured in Hertz (Hz = 1/sec)(7)
We can consider an imaginary frequency space, which represent the frequency at which a
periodic traversal wave propagated at. As determined in the relationships, we learn that
for a wave with a uniform speed (unchanged velocity), as the frequency in the frequency
space increases, the wave length decreases, and vice versa. In other words, a wave’s prop-
agating periodic motion can be described either by its frequency.
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(4) (4)
In modern uses, the application of wave analysis often requires the introduction of more
than a single period wave. In other words, often waves are made of more than a single sin
or cosine period motion and therefore are made of more than one frequency(6). The anal-
ysis of such waves becomes more complex than the traverse position equation of a simple
traversal periodic wave (which is based on having only one sin wave)(4).

(4)

As mentioned, Fourier originally wanted to use the mathematical concept he developed
to solve partial differential equations, specifically the heat equation (2). It was later dis-
covered that the Fourier’s Transformation can be used to evaluate the transformation from
a wave’s frequency space to a series of periodical waves that sum up to a final descrip-
tion of the complex wave’s behavior. This transformation described a wave’s motion and
behavior in a form familiar to engineers for wave analysis and modification. (5)

3 Methodology and Mathematics I: Euler’s Formula

In this work, Fourier made a great use of a substitution well known to mathematicians:

eiθ = cos θ + i · sinθ

It was developed in the mid 1700’s by a Swiss Mathematician, Leonhard Euler [pronounced
’Oiler’], who is well know to this day for his contributions for calculus mathematics.
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3.1 Imaginary and Real Planes

Euler wanted to describe the motion of waves in imaginary planes. He started by con-
sidering the basic trigonometric and periodic functions of sines and cosines.

1

The image represents a simple periodical motion (circular motion) with a position de-
scribed as a sinusoidal wave. By the trigonometric identity, we establish that: (12)

cos2 θ + sin2 θ = 1

The same application can be made on the plane of imaginary numbers.

2

Any value on the plane of imaginary numbers can be represented in the form

c = a+ bi

We can define its conjugate value as

d = a− bi
1This figure was drawn on Google Drawings
2This figure was drawn on Google Drawings

5



Therefore, the length-squared of a complex number is given by the binomial identity (12)

c · d = (a+ bi)(a− bi) = a2 + b2

By comparing the length squared of a complex number to the length number given by the
mentioned trigonometric identity for an x-y plane, we can consider the following transfor-
mation

Real Space Imaginary Space

cos2 θ + sin2 θ = 1 a2 + b2 = 1
cos θ a
sin θ b

if we recall the value of an imaginary number,

c = a+ bi

we conclude the following transformation for a value on the imaginary plane:

z = cos θ + i sin θ = x+ iy

Using this transformation, we can redefine the following conjugates(12):

c = a+ bi = cos θ + i · sin θ

d = a− bi = cos θ − i · sin θ

algebraically we can consider:

cos θ + i sin θ

=
1

2
· 2 cos θ + 1

2
· 2i sin θ

=
1

2
(cos θ + cos θ) +

1

2
(i sin θ + i sin θ)

=
1

2
(cos θ + cos θ − (i sin θ − i sin θ) + 1

2
(i sin θ + i sin θ + (cos θ − cos θ)

=
1

2
(cos θ − i sin θ + cos θ + i sin θ) +

1

2
(i sin θ + cos θ + i sin θ − cos θ)

=
1

2
((cos θ − i sin θ) + (cos θ + i sin θ)) +

1

2
((i sin θ + cos θ)− (cos θ − i sin θ))

By looking at the trans formative conjugated that were redefined, c and d we can rewrite
our equation(12):

1

2
(d+ c) +

1

2
(c− d) (eqn. 1)
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Similarly, the following exponential function can be considered as a transformation be-
tween the real and imaginary spaces

eiθ

=
1

2
eiθ +

1

2
eiθ

=
1

2
eiθ +

1

2
eiθ + (

1

2
e−iθ − 1

2
e−iθ)

= (
1

2
eiθ +

1

2
e−iθ) + (

1

2
eiθ − 1

2
e−iθ)

=
1

2
(eiθ + e−iθ) +

1

2
(eiθ − e−iθ)

notice the conjugates in the equations. Define them as(12):

m = eiθ, n = e−iθ

Therefore, with m and n defined, we can rewrite our equation(12):

1

2
(m+ n) +

1

2
(m− n) (eqn. 2)

By comparing the two equations (eqn. 1 ) and (eqn. 2), along with the comparison of the
conjugate relationship, we can establish that m = c and therefore(12):

eiθ = cos θ + i sin θ (eqn. EF)

This equation is also known as the Euler’s Formula, and is heavily used in high-level math
and engineering.

3.2 With Trigonometric Series

Interestingly enough, another method of proving Euler’s formula, is by using trigono-
metric series (12).
Consider the first few terms of the following series (1):

cos θ =
N∑
n=0

(−1)n · θ2n

(2n!)
= 1− θ2

2!
+
θ4

4!
− θ6

6!
+
θ8

8!
(eqn. TS-1)

sin θ =
N∑
n=0

(−1)n · θ2n+1

(2n+ 1!)
= θ − θ3

3!
+
θ5

5!
− θ7

7!
(eqn. TS-2)

ex =
N∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+
x7

7!
+
x8

8!
(eqn. TS-3)
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Now, considering (eqn. TS-3), we can establish that:

eiθ =
N∑
n=0

(iθ)n

n!
= 1 + iθ +

(iθ)2

2
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+

(iθ)8

8!

= 1 + iθ +
i2θ2

2
+
i3θ3

3!
+
i4θ4

4!
+
i5θ5

5!
+
i6θ6

6!
+
i7θ7

7!
+
i8θ8

8!

By considering the following chart of the values of imaginary numbers, we can substitute
accordingly (1):

n in Value

1 i
√
−1

2 i2 -1
3 i3 -

√
−1

4 i4 1

eiθ = 1 + iθ − θ2

2
− iθ

3

3!
+
θ4

4!
+ i

θ5

5!
− θ6

6!
− iθ

7

7!
+
θ8

8!

= 1− θ2

2
+
θ4

4!
− θ6

6!
+
θ8

8!
+ iθ − iθ

3

3!
+ i

θ5

5!
− iθ

7

7!

= 1− θ2

2
+
θ4

4!
− θ6

6!
+
θ8

8!
+ i(θ − θ3

3!
+
θ5

5!
− θ7

7!
)

We can now substitute the equations (eqn. TS-1) and (eqn. TS-2) which leads us to Euler’s
formula (1) (12)

eiθ = cos θ + i sin θ (eqn. EF)

4 Methodology and Mathematics II: Fourier’s Transforms

In 1805, Joseph Fourier came up with the idea that ”’any’ function [f(X)] on the interval
[0,1] can be written as a sum of sines and cosines” (2).
Recall from section —- the series of trigonometric periodic functions Fourier defined:

F (t) = sn(t) =
a0
2

+

N∑
n=1

(an · cos(ω · t)) + bn · sin(ω · t)) (eqn. FS-1)

To differentiate the Fourier transforms from the Fourier series, the amplitudes of the
different frequencies (in the frequency space) are needed. This process is called Fourier
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analysis and is greatly used in applications in the world of physics and engineering.
Fourier Analysis, by its definition, is the ”process of extracting from the signal the various
frequencies and amplitudes that are present” (6). By using the orthogonality property of
the periodical trigonometric functions of sines and cosines, the amplitudes a and b (also
known as the Fourier coefficients) can be computed (5). The property defines that by taking
a sine sand and a cosines functions (or two sines or two cosines), each a multiple of some
fundamental frequency multiplying them together, and integrating that product over one
period of the frequency, the results is always zero (5).∫ P

t=0
cos(ωt · n) · cos(ωt ·m)dt = 0 (eqn. OP-1)

and ∫ P

t=0
sin(ωt · n) · sin(ωt ·m)dt = 0 (eqn. OP-2)

Unless m = +/- n, in which case:∫ P

t=0
sin(ωt · n) · cos(ωt ·m)dt = 0 (eqn. OP-3)

Note that both (eqn. OP-1) and (eqn. OP-2) equals to 1/(2f) if m = n. Next, we multiple
and integrate F(t) (eqn. FS-1) over one period P, as follows (5):∫ P

t=0
F (t) sin(ωt · n)dt

=
a0
2

∫ P

t=0
sin(ωt · n) +

∫ P

t=0

∞∑
n=1

[an cos(ωt · n) + bn sin(ωt · n)] sin(ωt ·m)dt

Such that all the terms of the summation vanish on integration besides

=

∫ P

t=0
bm sin2(ωt ·m)dt = bm

∫ P

t=0
sin2(ωt ·m)dt =

bm
2f

=
bm · P

2

Hence we conclude (5) (6):

bm =
2

P

∫ P

t=0
F (t) · sin(ωt ·m)

And similarly:

am =
2

P

∫ P

t=0
F (t) · cos(ωt ·m)

Which represent the Fourier Coefficients in the Fourier Series.
By using the integrated definitions of Fourier’s coefficients, the development of the Fourier
transformation was possible. Considering the frequency space is an imaginary space used
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for a convenient description of a periodical traversal wave’s behavior, using the [Fourier]
series he developed, Fourier defined two functions (5) (4):

• f(x) the function of the wave in real space.

f(t) =

∫ ∞
−∞

F (K) · ei·2πKtdK =

∫ ∞
−∞

F (K) · eiωtdK

• F(K) the function of the wave in frequency space.

F (K) =

∫ ∞
−∞

f(t) · e−i·2πtKdx =

∫ ∞
−∞

F (K) · eiωtdx

Where K is the frequency of the traversal wave in cycles per second.
Note that the Fourier transforms in two dimensions (with the imaginary frequency space)
is given by(6):

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i·2π(ux+vy)dxdy

where u and v are spatial frequencies measures in the x and y directions respectively.
These equations represent the transformation of a wave’s periodical behavior from a fre-
quency space to real space, and vice versa (6). We see the use of imaginary numbers applies
to the concept that the frequency space is a ’made-up’ imaginary dimension. By the sim-
ple substitution provided by Euler’s Formula (eqn. EF), we can see periodic motion in the
space-transformative equations (6) (4):

f(t) =

∫ ∞
−∞

F (K) · (cos(ωt) + i sin(ωt))dK

F (K) =

∫ ∞
−∞

f(t) · (cos(−ωt) + i sin(−ωt))dx

Now, we can display these equations in a form known as Discrete Fourier Transforms(6),
which essentially converts the integrals to summation form (4).

fn =
1

n

N−1∑
K=0

FK · (cos(ω
n

N
) + i sin(ω

n

N
)) =

N−1∑
K=0

FK · ei·ω
n
N

FK =
N−1∑
n=0

fn · (cos(−ω
n

N
) + i sin(−ω n

N
)) =

N−1∑
n=0

fn · e−i·ω
n
N

In this form, of summations of periodical motion, the behavior of any detected traversal
disturbance in a medium can be displayed as a multiplication of matrices.
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5 Problems and Fast Fourier Transformation

We have seen therefore that by using Euler’s Formula as a substitution in Fourier’s
Series, any detected traversal wave can be displayed and presented as the product (mul-
tiplication) of multiple matrices. As programmers and engineers attempted to automate
this process, a problem was encountered: it often took a great amount of time to calcu-
late the result of the matrix multiplication, which significantly slowed down the process of
translating the wave into matrices and then convert those into readable information and
data.
To resolve this issue, mathematicians developed algorithms and methods to quicken the
process of calculating the Fourier transforms. The most common and main two algorithms
used today are the Cooley - Tukey Algorithm(11), and the Butterfly Diagram.

5.1 The Cooley - Tukey Algorithm

In 1965, two Mathematicians, Cooley and Tukey, published a paper about mathematical
methods initially introduced by Gauss in 1805(8), which allowed quick computation of the
DFT [Discrete Fourier transforms], which is mostly done by programs and code. To under-
stand the Cooley-Tukey algorithm, the proper way in which the Fourier Transforms is cal-
culated by a computer program must be understood: represented as an element of an array
- a list of items in computer programs. By referring to the arrays: the Discrete Fourier

Array Space Notation

Array One Real Space X[f]
Array Two Frequency Space X[n]

Transformation can be represented as the following formula (10):

X[f ] =

N−1∑
n=0

X[n]e−iω
n
N

An efficiency computer program to build such an array has an order of O(N2) Which
means the relationship between the amount of elements to add to the array to the time it
will take (in repetitions of the algorithm), is quadratic, and therefore not considerably truly
efficient, especially considering the applies matrices and series are incredibly large(13).
The algorithm is built on the concept of exploiting the symmetry of the term: e−iω

n
N =

e−i
2πfn
N Where we define the following (10):

WN = e−i
2π
N ⇐⇒W fn

N = e−i
2πf ·n
N = e−iω

n
N

The symmetry of the term is special in its complex conjugate symmetry (see section 3.1) as
well as in its periodicity both in n (number of cycles) and f(element’s frequency) (10). The
development of the algorithm begins by sorting the elements into odd and even indexed
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sub-sequences (13):

X[f ] =
N−1∑
n=0

X[n]W fn
N =

∑
n=odd

X[n]W fn
N +

∑
n=even

X[n]W fn
N

By referring to the definition of odd and even integers (13):

Term Definition

Set Z Set of all integers {0,±1,±2,±3, · · ·}
Even Integers ∀ (2r) ∈ Z | r ∈ Z
Odd Integers ∀ (2r + 1) ∈ Z | r ∈ Z

we define (13) (10):

X[f ] =

N
2
−1∑

n=0

X[2r]W f2r
N +

N
2
−1∑

n=0

X[2r + 1]W
f(2r+1)
N

=

N
2
−1∑

n=0

X[2r](W 2
N )

fr +W f
N

N
2
−1∑

n=0

X[2r + 1](W 2
N )

fr

=

N
2
−1∑

n=0

X[2r]W fr
N
2

+W f
N

N
2
−1∑

n=0

X[2r + 1]W fr
N
2

The result is an array X[f] of DFT split into two arrays of DFT: odd integers, and event
integers. Which can also be represented as:

X[f ] = Xeven[f ] +W f
N ·Xodd[f ]

Each one of the size N/2.

5.2 Butterfly Diagrams

In the Cooley-Tukey algorithm, the single array (or rather single column matrix) of
elements from Fourier’s series was split into two arrays of Discrete Fourier Trams forms
(even and odd integers). This set up allows the computing program to avoid any matrix
multiplications, and significantly quicker, compute the desired product. This is done by
graphing butterfly diagrams(11).
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(10)

As seen in the attached figure, the two arrays are arranged in a single column. By
creating diagonal lines (which give the look of a butterfly to the diagram), they become or-
ganized in the desired form, which allows us to avoid any matrix computation(11). How-
ever, the butterfly diagram in the figure only describes an array that was split once. When
arrays are on a much larger scale, division into two arrays only one times often will make
a difference not significant enough to slow down the computations. Therefore, we can
continue and divide each N

2 DFT by two, until we get as many arrays of P elements each.

N

2
,
N

4
,
N

8
, · · · , N

2m−1
,
N

2m
, 1

The ’cost’ or time )in algorithm repetition per element) for N elements is therefore(10):

N

2p
= 1 −→ N2

2P
+ P ·N =

N2

N
+N log2N

Therefore, since N � N log2N , the ’cost’ for an N large array is(10)

O(N log2N)

5.3 Algorithm Comparison

With the Cooley-Tukey algorithm, the computer program builds the desired array with
an order of O(log2(N)), which is significantly more effective. Therefore, there is no doubt,

Number of Elements FFT (Cooley - Tukey) DFT Ratio (FFT/DFT)

N O(N2) O(N· log2(N)) O(log2(N)/N)
1 1 0 0
10 100 34 3.4
100 10000 664 0.0664
1000 1000000 9966 0.009966
10000 100000000 132878 0.00132878
100000 10000000000 1660965 1.660965·10−4

that especially when the number of elements is getting bigger (which if often the case),
the Fast Fourier Transform takes significantly much less time than the Discrete Fourier
Transform.
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6 Applications and Use

Essentially, as can be concluded from its derivation, the Fourier transforms can be used
to calculate any transformation from an imaginary space to real space, or evaluate it over
a finite domain.
First of all, the method of Fourier transforms is used for its original purpose: solve partial
differential equations and initial value problems of such kind. A great example is the
wave equation (eqn. W)(7), which can be solved by using Fourier transforms. We can
multiply both sides by a factor of Euler’s formula (eqn. EF) and integrate with respect to x
(horizontal displacement)(3):

v2
∂2y

∂x2
· e−ikx =

∂2y

∂t2
(x, t) · e−ikx

∫ ∞
−∞

v2
∂2y

∂x2
· e−ikxdx =

∫ ∞
−∞

∂2y

∂t2
(x, t) · e−ikxdx

From section 4, we establish the following Fourier transform(3):∫ ∞
−∞

f ′(x) · e−i·Kxdx = iK

∫ ∞
−∞

f(x) · e−i·Kxdx = iKF (K)

for a uniform (unchanged) velocity v, we can integrate by parts as follows (3):

u = e−iKx, dv = f ′(x)dx

such that, by the Fourier transforms:∫ ∞
−∞

∂2y

∂t2
(x, t) · e−ikxdx =

∂

∂t

∫ ∞
−∞

∂

∂t
(x, t) · e−ikxdx =

∂2

∂t2
Y (K, t)

Hence(3):
∂2

∂t2
Y (K, t) = −v2k2Y (K, t)

Although not a complete solution to the wave equation, the Fourier transforms had al-
lowed us to significantly simplify the wave equation to a form of two differential equation
that equate to each other.
Another example, is the Heat Equation (see introduction 1), which, to remind, solving it
was the main objective of the Fourier Series. It was solves by representing the general
solution (9) of the ’traversal heat disturbances in a medium by

T (x, 0) =

∞∑
n=1

An sin
nπx

L

Which (clearly) is related to a DFT (Discrete Fourier Transform)
Furthermore, The most commonly known practical application of Fourier transforms is
among electrical engineers for the translation of sound waves into isolated traversal
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waves and words in a readable form(8). To engineers, it is best known as digital sig-
nal processing. It includes the detection of sound over a time interval, and its isolation
from background-disturbing sounds. This is done by the Fourier transforms, which trans-
lates the total sound waves into a sum of periodical functions, which is a form that allows
us to simply cancel or neglect the ’disturbing waves’ that are unnecessary for the digital
processing. This isolated wave in the form of a sum of periodical trigonometric functions
is then converted to the form of discrete Fourier transforms, and by matrix multiplica-
tion (which is relatively slow), is processed into a user-readable form. This application is
used in many modern technologies, including voice recognition, earthquakes detection,
and electromagnetic radiation detection (8).

7 Summary

All in all, there is no doubt the Fourier transformation is a significant milestone in the
development of modern mathematics. Using Euler’s Formula that allows convenient com-
puting of imaginary numbers in the form of periodical trigonometric functions, the Fourier
transformation allows us to transform wave equations and behavioral formulas of period-
ical motions from an imaginary space to a real space by using a series of sinusoidal waves
in a form of a sum, which can also be represented as an integral over a finite domain. The
Fourier transformation,as explored, can then be displayed in its discrete form, which can
be evaluated by the multiplication of multiple matrices In conclusion, the Fourier trans-
formation is prohibitively too slow to translate traversal waves into data of readable form,
considering matrix multiplication of a large scale often requires a great amount of comput-
ing. In order to resolve this issue, engineers have developed the Cooley-Tukey algorithm
and the butterfly diagram which allowed a fast Fourier transformation, and therefore a
quick and reliable translation of detected disturbances in a medium (wave) into readable
and usable data. to summarize, the Fourier transforms are extremely helpful and useful in
the development of modern applications such as radiation detection, data integration over
distance, voice recognition, and more.
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