
1

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

Hashmaps and Its Mathematical Applications in the Software Development World

For the last semi-centennial, humanity has technologically advanced faster and quicker

than ever. Terms like encryption, mapping and hashing have become part of the daily life.

Programming and software development had become the fastest-growing field and the

technology industry is continually thriving. The need for software developers and programmers

is increasing, as does the need for software solutions. One of the greatest barriers humans have

encountered in the technological modern era is the storage of data. The more common hi-tech

has become in our daily life, the need for more storage, availability and accessibility for storage

increased. In recent decades, hi-tech products purchased by the average person and the need for

more available and accessible information storage have increased significantly. In order to solve

the information storage issue, resulting from the exponential growth in the information and the

data science fields, software developers founded hashing - a method of storing more information

in a highly available and accessible method which allows quick retrieval of storage and

information, and will later develop into many additional applications such as encryption,

compiler operations, and cryptocurrency.

Hashing is nowadays, one of the most commonly known data structures with which ‘by

the book’, every programmer must be familiar. Hashing is a “dictionary in which keys are

mapped to array positions by [certain] hashing functions” (National Institute of Standards and

Technology). In terms of software development, “hashing is the process of converting input of

https://xlinux.nist.gov/dads/HTML/dictionary.html
https://xlinux.nist.gov/dads/HTML/key.html
https://xlinux.nist.gov/dads/HTML/array.html
https://xlinux.nist.gov/dads/HTML/hash.html

2

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

any length into a fixed size [string of text] key, using a mathematical function” (Lisk). The

hashing function, based on a specific algorithm, takes information as its input, and hashed it into

a specific. Using an array (a bounded, fixed sized list), the function will store the information in

its key’s indexed reference. The keys’ array is limited in its size to a relatively small array, to

ensure efficient time of

information retrieval from the

hash table.

The attached code provides an 1

example: the user is requested

to enter a number to hash, the

input. That value is then stored

in the “keys” arrays, based on

its key generated from the “hashing” function. The hashing function, based on its algorithm,

returns as the number’s key the last two digits to serve as an

indexing reference, and stores it based on that indexing

reference in the array at the key’s position (Carroll). Here is 2

the following outcome after inserting a large number.

1 Self Programmed in the C++ shell online compiler http://cpp.sh/

2 *Self Programmed output in the C++ shell online compiler http://cpp.sh/

http://cpp.sh/
http://cpp.sh/

3

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

The user enters ‘1234567890’ as the desired number to store. The hash function generates a key

based on the algorithm (modulus 100), which results in 90 as the output and the key. The large

value is then stored within the 90th references index in the keys’ array, allowing quick

(convenient) access to the hashed information. In other words, hashing allows the storage of

large-scale information and data in the accessible small-scaled array(Arash Patrow).

There are endless algorithms for hashing, for infinite keys, which makes hashing a unique

data structure for applications such as cryptocurrency, and cyber security. A common example of

simple hashing algorithms is the hashing of a key using the modulus (remainder) function,

dividing a large integer by 100, resulting in the last two digits of the value as its key value ad

indexed reference. Another example includes the addition of all digits of the number to server as

the indexed reference, algorithms based on values from the ASCII table, as well as the division

or multiplication of a number by a specific factor.

In the attached code , the 3

hashing algorithm creates a key

by adding all the digits of the

input value. Every iteration of the

loop, the ‘total’ variable increases

by the value of the last digit of

3 *Self Programmed in the C++ shell online compiler http://cpp.sh/

http://cpp.sh/

4

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

the ‘toHash’ value, which is referred to as a string so it can be shortened every iteration by 1

character. In case the resulted key is greater than 100, the function will return the last two digits

again.

In this approach to hashing, one major problem arises: a situation where two values have

the same key could result in the accidental erase and removal of memory. For instance, in the

remainder algorithm, there potentially could be two (or more) values with the same last two

digits, which would be assigned to the same indexed reference in the array. For example, the

values 12345 and 98745 would both be assigned the 45th spot in the array, resulting in a

situation where the first value to be hashed to be reassigned. To overcome this issue, hashing has

an additional feature which allows the quick accessibility and availability of information, called

chaining (Laakmaan McDowell). In chaining, “every time a collision occurs, [where two or more

values are assigned to the spot in the bounded array of keys], just store them in a [linked] list”

(Laakmaan McDowell). Every entry in the bounded array has a chain started for every array

entry with two or more hashed values . The first item added to a specific spot would create that

chain, with an additional “node” in the chain to an empty spot, in such a way that the next time

the spot in the bounded array of keys will be assigned, that empty spot will be filled with an

additional node that holds the hashed information, and is creating the next empty “node” in the

chain for a future hashed value to be assigned in the same indexed reference of the bounded

array of keys.

5

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

As implied in the figure , time a 4

collision value is inserted, a new

node is created in a chain.

Retrieval of information become

more convenient as well as the

user simply needs the referring

index of the position, and then

linearly traverse through the

chain the find the desired value.

Hashing is therefore considered a discrete data structure. However, the questions remain: how

can we design an effective and useful hashing algorithm, which hashing algorithms are

considered useful? In order to understand this question, we must first explore some of the

applications of hash functions.

One of the most common applications of hashing is encryption. Hash maps, as derived

from its name, is the transformation of large-scale data into a small-scaled data represented by a

reference key in a bounded structure (array). The key and algorithm are the ones to encrypt the

information. Encryption, by its formal definition, is the conversion of information and data into

code, objectively to prevent unauthorized access. By hashing information with a key with limited

access, only those who hold the key value would be able to decrypt the information into its

4 Created by the paper’s author in Google Drawings

6

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

original form. Decryption, the reverse action of encryption, is the retrieval of hashed information

based on a given key. (Attach a hashmap of encryption, explain why hashing in encryption in

that figureIV)

Decryption is the reverse action of encryption, therefore it is necessary to design an

efficient encryption algorithm, a function that will allow retrieval of the information and

conversion from its encrypted hashed form into the original data and information. Software

developers often find it a mathematical challenge to design an efficient hashing algorithm that

will allow decryption of information. In order to design such an algorithm or rather a function,

that will be able to encrypt, that function must have an inverse, as decryption is the inverse of the

encryption process. By definition, a function only has an inverse function of it is a bijection; by

definition of a bijection (Morris) relation, a function is considered to be a bijection only if it is a

one-to-one and onto function.

For a function to be considered ‘one-to-one’ (also known as an injection), every value in

the domain (any input to the function) must have a corresponding unique value in the codomain

(the output of the function). By its discrete mathematical definition: a function in ‘one-to-one’ if

, which in literal is presented as: for any two elementsa, If f (a) f (b) , then a b∀ b∈ A = =

 in the domain , if the values in codomain (the output) of (those are and ba A and ba

), respectively) will equal to each other, then they must be the same value in the(a) and f (bf

domain (Lecture 18: ‘One to One and Onto functions’). In other words, every element in the

7

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

domain would map only into one unique

value in the codomain. In the figure , it is 5

seen that there do not exist two elements in

the codomain that lead into the same value

in the domain (image of the function),

hence the function is 1:1 (one-to-one).

Comparatively, for any relation or

function to be considered an ‘onto’, its domain (the bounded structure of hashed information)

must have every single element mapped by an element from the domain. In other words, as long

as no element in the codomain is left out and is mapped to by some element from the domain, the

function is considered a surjective function (‘onto’). Mathematically discretely we define

. Literally comparing, the statement could be written b B, ∃ a A such that f (a) b∀ ∈ ∈ =

as: “for every value in the codomain, there exists a value in the domain such that the image

[map] of the domain value equals to the value in the codomain” (Lecture 18: ‘One to One and

Onto functions’). In other words, for every value in the codomain, there is a value in the domain

that is mapping to it.

As explained, an effective hash function is one that includes both the ability to encrypt as

well as decrypt, what is a bijection function. Theoretically, a hash function cannot be a bijection,

since it has an infinite domain mapped into a bounded limited domain. However, in some

5 Created by the paper’s author in Google Drawings

8

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

situations, where the domain is finite and the codomain (output) of the function does not include

any collisions of hashed information (as examined previously in the paper), the function could be

considered a bijective encryption function. To get around this arising issue, developers have

created an encryption key which will populate a large bounded array, equivalent in size to the list

structure holding the values to be hashed, but in a case of a collision, instead of creating an

additional node in an endless chain, the next item (by the referenced index) that is not populated

in the codomain (output array) will be assigned with the hashed value. As referred from the

figure , both structures of 6

encrypted and original

information hold the same

amount of values. As opposed

to the ‘endless chain’ hashing,

information retrieval is not

nearly as quick on the large

scale, but mathematically, it

allows to create an inverse

function for decryption purposes. In the figure, the first value is assigned to its specific indexed

reference position, based on the generated hashing key. The second item, as well, generated the

same key, but since the array of encrypted values already holds value at that position, the

6 Created by the paper’s author in Google Drawings

9

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

currently hashed item (the second item according to the figure), will be inserted into the indexed

position after the one generated as its key position (Caroll). In a situation where the hashing

function sends elements from an array (list) of items of a bigger size than then array of the

codomain, mathematically, by the “pigeonhole principle”, the function would not be 1:1.

According to the pigeonhole principle: suppose F is a function from X to Y, where x and

y are finite sets. If , then the function F is not 1:1. Since F is said to be a function, X| | > Y| |

every element from its codomain is sent out to its domain. Since the size of the codomain is

smaller than the size of the domain, some

values will be overwritten when sent to

values that already preoccupied a position

in the array of the codomain (Morris). The

Pigeonhole principle is best explained by

the analogy of pigeons: if more pigeons

were to be sent to a box where there are not

enough pigeonholes, some pigeons will 7

“leave” and will not be tracked, lost from records. Similarly, in hash functions, the information

will be overridden and data will be lost. Mathematically, then, hash function cannot be 1:1. In

practice, however, software developers do not see the collision as the violation or dissatisfaction

7 Created by the paper’s author in Google Drawings

10

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

of the one to one condition since no overriding of information will occur. Hence hash maps in

practice of programming could be designed to be bijective, and be built to have decryption maps,

which will allow a group of collided keys in the bounded structure to be mapped into their

possible outcomes in the domain.

All in all, there is no doubt in saying hashmaps are a revolutionary tool in the industry of

software development, specifically data science, information storage, cryptocurrency, and even

cybersecurity; hashing is a tool used widely in the software development world. As examined, a

common use of the hash function is encryption of information, allowing data accessibility to

authorized users only. However, in order for encryption to be available for users, there must be a

decryption function, reversing the encryption process, or in other words, an inverse function of

the hashing relation. Mathematically, in order for a function to have an inverse, it must be

considered a bijection, or by the definition of a bijective function, it must be considered injective

(one-to-one) and surjective (onto function). As examined, although in mathematical theory hash

functions could not be considered bijective and therefore not have an inverse (a decryption

possibility), in the practice of software development although collisions of information occur, the

injective property of a bijective function is not violated, hence it is possible to design a bijective

encryption hash function. It is hence concluded and seen that hashing has significantly

revolutionized the software engineering world, creating unique applications that could solve

issues as the world of technology continues to exponentially grow.

11

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

Works Cited

“Basics of Hash Tables” Hacker Earth.

https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/tutorial/

Carroll, Hyrum. “Hashing: Efficiency” YouTube, Hyrum Carroll, 21 Jan, 2015.

https://www.youtube.com/watch?v=Xigaybhsg6U

“Frege’s Theorem and Foundations for Arithmetic”. Stanford Encyclopedia of

Philosophy, 26 Jun, 2018. https://plato.stanford.edu/entries/frege-theorem/

“General Purpose Hash Function Algorithm.”Arash Patrow.

https://www.partow.net/programming/hashfunctions/

“Hashing Algorithms” JScrambler, JScrambler. 25 Oct, 2018.

https://blog.jscrambler.com/hashing-algorithms/

“Hash Table”, National Institutes of Standards and Technology.

https://xlinux.nist.gov/dads/HTML/hashtab.html

Laakmaan McDowell, Gayle. “Data Structures: Hash Tables.” YouTube, HackerRank, 27

Sep, 2016. https://www.youtube.com/watch?v=shs0KM3wKv8

“Lecture 18: ‘One to One and Onto Function’”, University of Colorado Boulder,

Department of Computer Science.

https://www.cs.colorado.edu/~srirams/courses/csci2824-spr14/functionTypes-18.html

Morris, Jason. Discrete Math Course - Course Notes, CS17, Las Positas College. 2019.

https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/tutorial/
https://www.youtube.com/watch?v=Xigaybhsg6U
https://plato.stanford.edu/entries/frege-theorem/
https://www.partow.net/programming/hashfunctions/
https://blog.jscrambler.com/hashing-algorithms/
https://xlinux.nist.gov/dads/HTML/hashtab.html
https://www.youtube.com/watch?v=shs0KM3wKv8
https://www.cs.colorado.edu/~srirams/courses/csci2824-spr14/functionTypes-18.html

12

Shahaf Dan

Math 10 / Computer Science 17 Honors Project

Professor Morris

“What is Hashing? Hash Functions Explained Simply” YouTube, Lisk, 08 Aug, 2018.

https://www.youtube.com/watch?v=2BldESGZKB8&t=3s

https://www.youtube.com/watch?v=2BldESGZKB8&t=3s

